Math 245B Lecture 21 Notes

Daniel Raban

March 4, 2019

1 L^{∞} Spaces and Duality of L^p Spaces

1.1 Properties of L^{∞} spaces

Theorem 1.1. L^{∞} has the following properties:

- 1. For all measurable $f, g, ||fg||_1 \le ||f||_1 ||g||_{\infty}$.
- 2. $\|\cdot\|_{\infty}$ is a norm.
- 3. L^{∞} is complete.
- 4. $f_n \to f$ in L^{∞} iff there exists $E \in \mathcal{M}$ with $\mu(E^c) = 0$ such that $f_n|_E \to f|_E$ uniformly.
- 5. The set of simple functions (not necessarily integrable) is dense in L^{∞} .

Remark 1.1. If $\mu \neq 0$, we can write

 $||f||_{\infty} := \inf\{a \ge 0 : \mu(\{|f| > a\}) = 0\} = \sup\{b : \mu(\{|f| > b\})\}.$

The infimum in the definition is attained, but the supremum may not be. Let $a = ||f||_{\infty}$. Let $a_n \downarrow 0$ and $\mu\{|f| > a_n\} = 0$. Now

$$\mu(\{|f| > a\}) = \mu\left(\bigcup_{n}\{|f| > a_n\}\right) = 0.$$

If $a = ||f||_{\infty}$, then $\mu(\{|f| > a\}) = 0$. Define

$$g = \begin{cases} f & |f| \le a \\ 0 & |f| > a. \end{cases}$$

Now g = f a.e., and $||g||_u = ||f||_{\infty}$.

Remark 1.2. If $\mu \ll \nu$ and $\nu \ll \mu$, then $L^{\infty}(\mu) = L^{\infty}(\nu)$.

Remark 1.3. On \mathbb{R}^n , the set of continuous functions with bounded support is not dense in L^{∞} . Indeed, $C[0,1] \subseteq L^{\infty}([0,1],m)$. Then if f is continuous, $||f||_{\infty} = ||f||_{u}$.

1.2 Duality of L^p spaces

Let (X, \mathcal{M}, μ) be a measure space, and let $1 \leq p < \infty$. Let q be such that $p^{-1} + q^{-1} = 1$. So $1 < q \leq \infty$.

Let $g \in L^q$. Then for all $f \in L^p$,

$$\left|\int fg\,d\mu\right| \leq \int |fg|\,d\mu \leq \|f\|_p \|g\|_q$$

by Hölder's inequality. So if we define $\varphi_g : L^p \to \mathbb{C}$ sendsing $f \mapsto f \mapsto \int fg \, d\mu$, then $\varphi_g \in (L^p)^*$, and $\|\varphi g\|_{(L^p)^*} \leq \|g\|_{L^q}$.

Theorem 1.2 (Riesz representation¹). If $1 , then <math>L^q \to (L^p)^*$ sending $g \mapsto \varphi_g$ is an isometric isomorphism. The same is true if p = 1, provided μ is σ -finite.

Remark 1.4. When $p = \infty$, q = 1. For basically any nontrivial measure, $(L^{\infty})^*$ is actually much bigger than L^1 .

In this lecture, henceforth, μ is a finite measure. The extension to σ -finite measures is obtained by splitting up the space into countably many pieces and applying these results to each piece.

Proposition 1.1. If $g \in L^q$, then $\|\varphi_g\| = \|g\|_q$.

Proof. We have already shown one of the inequalities. If $q < \infty$, (i.e. p > 1), then let

$$f := \frac{|g|^{q-1}\overline{\operatorname{sgn}(g)}}{\|g\|_q^{q-1}}$$

Then, because p(q-1) = q, we have

$$|f|^p = \frac{|g|^q}{\|g\|_q^q},$$

so $\int |f|^p = 1$. But now

$$fg = \frac{|g|^q}{\|g\|_q^{q-1}} |g| \operatorname{sgn}(g) = \frac{|g|^q}{\|g\|_q^q}$$

so $\int fg = \|g\|$. That is, $\|\varphi_g\| = \|\varphi_g\| \|f\|_p \ge \int fg = \|g\|_q$.

If $q = \infty$, i.e. g is essentially bounded, let $\varepsilon > 0$. Then $0 < \mu(\{|g| \ge ||g||_{\infty} - \varepsilon\}) < \infty$. Now let

$$f = \mathbb{1}_{\{|g| \ge \|g\|_{\infty} - \varepsilon\}} \operatorname{sgn}(g)$$

¹There are many theorems called the Riesz representation theorem, all by the same person. Riesz was a busy guy.

Then $f \in L^1$, and $||f|| = \mu(\{|g| \ge ||g||_{\infty} - \varepsilon\})$. Also,

$$\int fg \, d\mu = \int_{\{|g| \ge \|g\|_{\infty} - \varepsilon\}} |g| \overline{\operatorname{sgn}(g)} \, d\mu \ge (\|g\| - \varepsilon) \|f\|,$$

so $\|\varphi_g\| \ge \|g\|_{\infty} - \varepsilon$ for all $\varepsilon > 0$.

Remark 1.5. If μ is finite, $L^q \subseteq L^1$ for all $q \ge 1$.

Proposition 1.2. Let $g \in L^1$, and let Σ be the set of simple functions on X. Then

$$||g||_q = \sup\left\{\left|\int fg\right| : f \in \Sigma, ||f||_p \le 1\right\}.$$

Proof. We already have that $||g||_q$ is at least as much as the right hand side, so it is enough to show the reverse.

Step 1: $|fg| \leq \text{RHS}$ for bounded, measurable functions: For all such f, $||f||_p \leq 1$. Given this f, there exist simple functions $f_n \to f$ pointwise such that $|f_n| \uparrow |f|$. In particular, $f_n \in \Sigma$, and $||f_n||_p \leq 1$. Also, $f_ng \to fg$ a.e., and $|f_ng| \leq |fg|$ for all n. Then $fg \in L^1$ because $||fg||_1 \leq ||f||_{\infty} ||g||_1$. So, by the DCT, $|\int f_n g| \to |\int fg|$; since the sequence terms are all bounded by the RHS of the inequality we want to show, so is the limit.

Step 2: $||g||_q \leq \text{RHS}$. Assume $q < \infty$. There exist simple functions $\varphi_n \to g$ pointwise such that $|\varphi_n| \uparrow |g|$. By the previous proposition, there exist simple functions f_n such that $\|\varphi_n\|_q = |\int f_n \varphi_n|$. Then, by the monotone convergence theorem,

$$\|g\|_q = \lim_n \|\varphi_n\|_q = \lim_n |\int f_n \varphi_n| \le \lim_n \int |f_n| |\varphi_n| \le \lim_n \int |f_n| |g| \le \text{RHS}. \qquad \Box$$

We have shown so far that

$$||g||_q = \sup\left\{ \left| \int fg \right| : f \in L^p, ||f||_p = 1 \right\} = \sup\left\{ \left| \int fg \right| : f \in \Sigma, ||f||_p = 1 \right\}.$$

We will finish up the rest of the proof next time.