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1 L∞ Spaces and Duality of Lp Spaces

1.1 Properties of L∞ spaces

Theorem 1.1. L∞ has the following properties:

1. For all measurable f, g, ‖fg‖1 ≤ ‖f‖1‖g‖∞.

2. ‖ · ‖∞ is a norm.

3. L∞ is complete.

4. fn → f in L∞ iff there exists E ∈M with µ(Ec) = 0 such that fn|E → f |E uniformly.

5. The set of simple functions (not necessarily integrable) is dense in L∞.

Remark 1.1. If µ 6≡ 0, we can write

‖f‖∞ := inf{a ≥ 0 : µ({|f | > a}) = 0} = sup{b : µ({|f | > b})}.

The infimum in the definition is attained, but the supremum may not be. Let a = ‖f‖∞.
Let an ↓ 0 and µ{|f | > an} = 0. Now

µ({|f | > a}) = µ

(⋃
n

{|f | > an}

)
= 0.

If a = ‖f‖∞, then µ({|f | > a}) = 0. Define

g =

{
f |f | ≤ a
0 |f | > a.

Now g = f a.e., and ‖g‖u = ‖f‖∞.

Remark 1.2. If µ� ν and ν � µ, then L∞(µ) = L∞(ν).

Remark 1.3. On Rn, the set of continuous functions with bounded support is not dense
in L∞. Indeed, C[0, 1] ⊆ L∞([0, 1],m). Then if f is continuous, ‖f‖∞ = ‖f‖u.
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1.2 Duality of Lp spaces

Let (X,M, µ) be a measure space, and let 1 ≤ p <∞. Let q be such that p−1 + q−1 = 1.
So 1 < q ≤ ∞.

Let g ∈ Lq. Then for all f ∈ Lp,∣∣∣∣∫ fg dµ

∣∣∣∣ ≤ ∫ |fg| dµ ≤ ‖f‖p‖g‖q
by Hölder’s inequality. So if we define ϕg : Lp → C sendsing f 7→ f 7→

∫
fg dµ, then

ϕg ∈ (Lp)∗, and ‖ϕg‖(Lp)∗ ≤ ‖g‖Lq .

Theorem 1.2 (Riesz representation1). If 1 < p <∞, then Lq → (Lp)∗ sending g 7→ ϕg is
an isometric isomorphism. The same is true if p = 1, provided µ is σ-finite.

Remark 1.4. When p =∞, q = 1. For basically any nontrivial measure, (L∞)∗ is actually
much bigger than L1.

In this lecture, henceforth, µ is a finite measure. The extension to σ-finite measures is
obtained by splitting up the space into countably many pieces and applying these results
to each piece.

Proposition 1.1. If g ∈ Lq, then ‖ϕg‖ = ‖g‖q.

Proof. We have already shown one of the inequalities. If q <∞, (i.e. p > 1), then let

f :=
|g|q−1sgn(g)

‖g‖q−1q

.

Then, because p(q − 1) = q, we have

|f |p =
|g|q

‖g‖qq
,

so
∫
|f |p = 1. But now

fg =
|g|q

‖g‖q−1q

|g| sgn(g) =
|g|q

‖g‖qq
,

so
∫
fg = ‖g‖. That is, ‖ϕg‖ = ‖ϕg‖‖f‖p ≥

∫
fg = ‖g‖q.

If q =∞, i.e. g is essentially bounded, let ε > 0. Then 0 < µ({|g| ≥ ‖g‖∞ − ε}) <∞.
Now let

f = 1{|g|≥‖g‖∞−ε}sgn(g).

1There are many theorems called the Riesz representation theorem, all by the same person. Riesz was
a busy guy.
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Then f ∈ L1, and ‖f‖ = µ({|g| ≥ ‖g‖∞ − ε}). Also,∫
fg dµ =

∫
{|g|≥‖g‖∞−ε}

|g|sgn(g) dµ ≥ (‖g‖ − ε)‖f‖,

so ‖ϕg‖ ≥ ‖g‖∞ − ε for all ε > 0.

Remark 1.5. If µ is finite, Lq ⊆ L1 for all q ≥ 1.

Proposition 1.2. Let g ∈ L1, and let Σ be the set of simple functions on X. Then

‖g‖q = sup

{∣∣∣∣∫ fg

∣∣∣∣ : f ∈ Σ, ‖f‖p ≤ 1

}
.

Proof. We already have that ‖g‖q is at least as much as the right hand side, so it is enough
to show the reverse.

Step 1: |fg| ≤ RHS for bounded, measurable functions: For all such f , ‖f‖p ≤ 1. Given
this f , there exist simple functions fn → f pointwise such that |fn| ↑ |f |. In particular,
fn ∈ Σ, and ‖fn‖p ≤ 1. Also, fng → fg a.e., and |fng| ≤ |fg| for all n. Then fg ∈ L1

because ‖fg‖1 ≤ ‖f‖∞‖g‖1. So, by the DCT, |
∫
fng| → |

∫
fg|; since the sequence terms

are all bounded by the RHS of the inequality we want to show, so is the limit.
Step 2: ‖g‖q ≤ RHS. Assume q < ∞. There exist simple functions ϕn → g pointwise

such that |ϕn| ↑ |g|. By the previous proposition, there exist simple functions fn such that
‖ϕn‖q = |

∫
fnϕn|. Then, by the monotone convergence theorem,

‖g‖q = lim
n
‖ϕn‖q = lim

n
|
∫
fnϕn| ≤ lim

n

∫
|fn||ϕn| ≤ lim

n

∫
|fn||g| ≤ RHS .

We have shown so far that

‖g‖q = sup

{∣∣∣∣∫ fg

∣∣∣∣ : f ∈ Lp, ‖f‖p = 1

}
= sup

{∣∣∣∣∫ fg

∣∣∣∣ : f ∈ Σ, ‖f‖p = 1

}
.

We will finish up the rest of the proof next time.
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